Generated synthetic data in medical research can substitute privacy and security-sensitive data with a large-scale curated dataset, reducing data collection and annotation costs. As part of this effort, we propose UniXGen, a unified chest X-ray and report generation model, with the following contributions. First, we design a unified model for bidirectional chest X-ray and report generation by adopting a vector quantization method to discretize chest X-rays into discrete visual tokens and formulating both tasks as sequence generation tasks. Second, we introduce several special tokens to generate chest X-rays with specific views that can be useful when the desired views are unavailable. Furthermore, UniXGen can flexibly take various inputs from single to multiple views to take advantage of the additional findings available in other X-ray views. We adopt an efficient transformer for computational and memory efficiency to handle the long-range input sequence of multi-view chest X-rays with high resolution and long paragraph reports. In extensive experiments, we show that our unified model has a synergistic effect on both generation tasks, as opposed to training only the task-specific models. We also find that view-specific special tokens can distinguish between different views and properly generate specific views even if they do not exist in the dataset, and utilizing multi-view chest X-rays can faithfully capture the abnormal findings in the additional X-rays. The source code is publicly available at: https://github.com/ttumyche/UniXGen.


翻译:在医疗研究中,生成的合成数据可以用大规模的策划数据集替换隐私和安全敏感的数据,从而减少数据收集和注释成本。作为这一努力的一部分,我们提出了 UniXGen,一种统一的胸部 X 射线和报告生成模型,具有以下特点。首先,我们采用矢量量化方法将胸部 X 射线离散化为离散视觉标记,并将两个任务都形式化为序列生成任务,从而设计了一个双向胸部 X 射线和报告生成的统一模型。其次,我们引入了几个特殊标记,以生成具有特定视图的胸部 X 射线,当所需视图不可用时,这些特殊标记可以发挥作用。此外,UniXGen可以灵活地采用各种输入,从单个到多个视图,以利用其他 X 射线视图中可用的附加发现。我们采用一种高效的 transformer 来处理多视图胸部 X 射线的高分辨率和长段落报告的长输入序列,以实现计算和内存效率。在广泛的实验中,我们表明我们的统一模型对两个生成任务具有协同作用,而不是只训练特定任务的模型。我们还发现,视图特定的特殊符号可以区分不同的视图,并且即使这些视图不存在于数据集中,也可以适当地生成特定的视图,利用多视图胸部 X 射线可以忠实地捕捉附加 X 射线中的异常发现。源代码可在 https://github.com/ttumyche/UniXGen 上公开获得。

0
下载
关闭预览

相关内容

【CVPR2023】基于动态图增强对比学习的胸部X光报告生成
专知会员服务
20+阅读 · 2023年3月23日
UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
13+阅读 · 2022年5月4日
论文浅尝 | 预训练单模态和多模态模型中的视觉常识
开放知识图谱
4+阅读 · 2022年8月22日
【Github】GPT2-Chinese:中文的GPT2训练代码
AINLP
52+阅读 · 2019年8月23日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
0+阅读 · 2023年5月29日
Arxiv
29+阅读 · 2022年9月10日
VIP会员
相关VIP内容
【CVPR2023】基于动态图增强对比学习的胸部X光报告生成
专知会员服务
20+阅读 · 2023年3月23日
UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
13+阅读 · 2022年5月4日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员