The $G$-expectation framework is a generalization of the classical probabilistic system motivated by Knightian uncertainty, where the $G$-normal plays a central role. However, from a statistical perspective, $G$-normal distributions look quite different from the classical normal ones. For instance, its uncertainty is characterized by a set of distributions which covers not only classical normal with different variances, but additional distributions typically having non-zero skewness. The $G$-moments of $G$-normals are defined by a class of fully nonlinear PDEs called $G$-heat equations. To understand $G$-normal in a probabilistic and stochastic way that is more friendly to statisticians and practitioners, we introduce a substructure called semi-$G$-normal, which behaves like a hybrid between normal and $G$-normal: it has variance uncertainty but zero-skewness. We will show that the non-zero skewness arises when we impose the $G$-version sequential independence on the semi-$G$-normal. More importantly, we provide a series of representations of random vectors with semi-$G$-normal marginals under various types of independence. Each of these representations under a typical order of independence is closely related to a class of state-space volatility models with a common graphical structure. In short, semi-$G$-normal gives a (conceptual) transition from classical normal to $G$-normal, allowing us a better understanding of the distributional uncertainty of $G$-normal and the sequential independence.


翻译:$G$的预期框架是典型的概率体系的笼统化,其动机是骑士不确定,通常的美元在其中扮演着核心角色。然而,从统计角度看,正常的美元分配看起来与典型的正常分配大不相同。例如,其不确定性的特点是一系列分配结构,不仅包括传统常态,有不同差异,而且包括额外分配,通常不是零偏差。美元正常的美元趋势由完全非线性PDE的类别“G$-热方程”来定义。为了理解对统计人员和从业者来说更为友好的概率性和随机性分配,我们采用了一套称为半G美元正常的次级结构,这种结构不仅在正常和美元正常之间混合,而且具有非零偏差性。我们将显示,当我们在半G$的正常度上将G$的顺序独立置于一个完全非直线性类别。 更为重要的是,我们提供了一种相对正常的G美元结构的正统性结构下,一种相对的正统性结构,即从普通的正值结构的正值结构的每类中,一种相对的正统的正值结构的正向。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
知识图谱在可解释人工智能中的作用,附81页ppt
专知会员服务
138+阅读 · 2019年11月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年1月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2021年12月16日
Arxiv
0+阅读 · 2021年12月14日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
知识图谱在可解释人工智能中的作用,附81页ppt
专知会员服务
138+阅读 · 2019年11月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年1月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员