Neural density estimators have proven remarkably powerful in performing efficient simulation-based Bayesian inference in various research domains. In particular, the BayesFlow framework uses a two-step approach to enable amortized parameter estimation in settings where the likelihood function is implicitly defined by a simulation program. But how faithful is such inference when simulations are poor representations of reality? In this paper, we conceptualize the types of model misspecification arising in simulation-based inference and systematically investigate the performance of the BayesFlow framework under these misspecifications. We propose an augmented optimization objective which imposes a probabilistic structure on the latent data space and utilize maximum mean discrepancy (MMD) to detect potentially catastrophic misspecifications during inference undermining the validity of the obtained results. We verify our detection criterion on a number of artificial and realistic misspecifications, ranging from toy conjugate models to complex models of decision making and disease outbreak dynamics applied to real data. Further, we show that posterior inference errors increase as a function of the distance between the true data-generating distribution and the typical set of simulations in the latent summary space. Thus, we demonstrate the dual utility of MMD as a method for detecting model misspecification and as a proxy for verifying the faithfulness of amortized Bayesian inference.


翻译:事实证明,在对不同研究领域进行高效模拟的贝耶斯罗框架的测算中,测深器在进行基于模拟的贝耶斯福框架的测深中表现得非常有力。 特别是,贝耶斯佛罗框架采用两步方法,在模拟程序暗含了概率函数定义的环境下进行摊销参数估计。 但是,在模拟对现实的描述不足时,这种测深器的准确性是多少? 在本文中,我们设想了模拟的推断中出现的模型误差类型,并系统地调查了贝耶斯福罗框架在这些误判中的表现。我们提议了一个扩大的优化目标,在潜在数据空间上设置一个概率结构,并利用最大平均值差异(MMD),以便在推断损害所获结果有效性的情形下,发现潜在的参数。 我们核实了我们关于一些人工和现实的误差的检测标准,从模拟模型到决策的复杂模型和对真实数据应用的疾病爆发动态。 此外,我们表明,事后推断误差是真实数据生成分布的距离和模拟模拟的典型模型之间的功能,我们展示了一种精确的模拟工具,用以核查精确的模拟空间模拟的效用。

0
下载
关闭预览

相关内容

贝叶斯推断(BAYESIAN INFERENCE)是一种应用于不确定性条件下的决策的统计方法。贝叶斯推断的显著特征是,为了得到一个统计结论能够利用先验信息和样本信息。
【CVPR2021】显著目标和伪装目标的不确定性感知联合检测
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
迁移学习简明教程,11页ppt
专知会员服务
105+阅读 · 2020年8月4日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
6+阅读 · 2018年12月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月18日
Arxiv
0+阅读 · 2022年2月16日
Arxiv
0+阅读 · 2022年2月16日
Arxiv
3+阅读 · 2018年1月10日
VIP会员
相关VIP内容
【CVPR2021】显著目标和伪装目标的不确定性感知联合检测
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
迁移学习简明教程,11页ppt
专知会员服务
105+阅读 · 2020年8月4日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
6+阅读 · 2018年12月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员