A frequent challenge encountered with ecological data is how to interpret, analyze, or model data having a high proportion of zeros. Much attention has been given to zero-inflated count data, whereas models for non-negative continuous data with an abundance of 0s are lacking. We consider zero-inflated data on the unit interval and provide modeling to capture two types of 0s in the context of the Beta regression model. We model 0s due to missing by chance through left censoring of a latent regression, and 0s due to unsuitability using an independent Bernoulli specification to create a point mass at 0. We first develop the model as a spatial regression in environmental features and then extend to introduce spatial random effects. We specify models hierarchically, employing latent variables, fit them within a Bayesian framework, and present new model comparison tools. Our motivating dataset consists of percent cover abundance of two plant species at a collection of sites in the Cape Floristic Region of South Africa. We find that environmental features enable learning about the incidence of both types of 0s as well as the positive percent covers. We also show that the spatial random effects model improves predictive performance. The proposed modeling enables ecologists, using environmental regressors, to extract a better understanding of the presence/absence of species in terms of absence due to unsuitability vs. missingness by chance, as well as abundance when present.
翻译:生态数据经常遇到的挑战是如何解释、分析或模型数据,其比例为零。我们非常关注零充量的计数数据,而缺乏无负数连续数据的模型,而缺乏无负数连续数据的模型,我们考虑单位间隔的零充量数据,并提供模型,以便在贝塔回归模型中捕捉两种0的模型。我们通过对潜伏回归进行左侧审查而偶然丢失了0个模型,而由于不适宜使用独立的伯努利规格来创造零点质量。我们首先开发模型,作为环境特征的空间回归,然后推广到空间随机效应。我们从等级上指定模型,使用潜在变量,将其适合巴伊西亚框架,并推出新的模型比较工具。我们的激励数据集包含南非开普富罗特兰特区各地点的2个植物物种的丰度。我们发现,环境特征使得人们能够了解0和正百分率的发生率。我们还展示空间随机效应的模型,在利用空间随机性模型来改善物种的概率性,我们还展示了在模型中的不可靠性,从而改进了目前对环境的概率的模型,从而改进了物种的概率。