In the assembly process of printed circuit boards (PCB), most of the errors are caused by solder joints in Surface Mount Devices (SMD). In the literature, traditional feature extraction based methods require designing hand-crafted features and rely on the tiered RGB illumination to detect solder joint errors, whereas the supervised Convolutional Neural Network (CNN) based approaches require a lot of labelled abnormal samples (defective solder joints) to achieve high accuracy. To solve the optical inspection problem in unrestricted environments with no special lighting and without the existence of error-free reference boards, we propose a new beta-Variational Autoencoders (beta-VAE) architecture for anomaly detection that can work on both IC and non-IC components. We show that the proposed model learns disentangled representation of data, leading to more independent features and improved latent space representations. We compare the activation and gradient-based representations that are used to characterize anomalies; and observe the effect of different beta parameters on accuracy and on untwining the feature representations in beta-VAE. Finally, we show that anomalies on solder joints can be detected with high accuracy via a model trained on directly normal samples without designated hardware or feature engineering.
翻译:在印刷电路板(PCB)组装过程中,大多数错误都是由地表登机装置(SMD)中的焊接装置造成的。在文献中,传统地物提取方法需要设计手工制作的特征,并依靠分层的 RGB 光度来检测焊接联合错误,而以受监督的革命神经网络(CNN)为基础的方法则需要许多贴有标签的异常样品(不适的焊接装置)才能达到很高的精确度。为了在没有特别照明和没有无误参照板的无限制环境中解决光学检查问题,我们建议建立一个新的乙型挥发自动自动编码器(beta-VAE)结构,用于检测异常现象,这种结构可以对IC和非IC组成部分起作用。我们表明,拟议的模型学会了数据分解的表达方式,导致更独立的特性,并改进了潜伏空间的表示方式。我们比较了用来描述异常现象的激活和梯度表示方式;并观察不同贝性参数对精确度的影响和对β-VAE中特征显示的不相交错作用。最后,我们表明,可直接通过一个经过训练的正常的固定的硬件特征通过模型在售商联合样品上检测出。