We propose a family of estimators based on kernel ridge regression for nonparametric structural functions (also called dose response curves) and semiparametric treatment effects. Treatment and covariates may be discrete or continuous, and low, high, or infinite dimensional. We reduce causal estimation and inference to combinations of kernel ridge regressions, which have closed form solutions and are easily computed by matrix operations, unlike other machine learning paradigms. This computational simplicity allows us to extend the framework in two directions: from means to increments and distributions of counterfactual outcomes; and from parameters of the full population to those of subpopulations and alternative populations. For structural functions, we prove uniform consistency with finite sample rates. For treatment effects, we prove $\sqrt{n}$ consistency, Gaussian approximation, and semiparametric efficiency with a new double spectral robustness property. We conduct simulations and estimate average, heterogeneous, and incremental structural functions of the US Jobs Corps training program.
翻译:我们建议以内核脊回归法为基础,对非对称结构功能(也称为剂量反应曲线)和半参数处理效果进行一系列估计; 治疗和共变可以是离散或连续的,低、高或无限的维度; 我们减少因果估计和推导为内核脊回归法的组合,这些内核脊回归法具有封闭形式的解决办法,并且与其他机器学习模式不同,很容易通过矩阵操作来计算。 这种计算简单化使我们能够将框架扩展为两个方向:从手段到反事实结果的增量和分布;从全部人口参数到亚人口和替代人口的参数。 对于结构功能,我们证明与有限的抽样率一致。 关于治疗效果,我们证明美元的一致性、高氏近似值和半参数效率与新的双谱稳健性属性一致。 我们进行模拟并估计美国就业团培训方案的平均、差异性和递增结构功能。