Network models are useful tools for modelling complex associations. If a Gaussian graphical model is assumed, conditional independence is determined by the non-zero entries of the inverse covariance (precision) matrix of the data. The Bayesian graphical horseshoe estimator provides a robust and flexible framework for precision matrix inference, as it introduces local, edge-specific parameters which prevent over-shrinkage of non-zero off-diagonal elements. However, for many applications such as statistical omics, the current implementation based on Gibbs sampling becomes computationally inefficient or even unfeasible in high dimensions. Moreover, the graphical horseshoe has only been formulated for a single network, whereas interest has grown in the network analysis of multiple data sets that might share common structures. We propose (i) a scalable expectation conditional maximisation (ECM) algorithm for obtaining the posterior mode of the precision matrix in the graphical horseshoe, and (ii) a novel joint graphical horseshoe estimator, which borrows information across multiple related networks to improve estimation. We show, on both simulated and real omics data, that our single-network ECM approach is more scalable than the existing graphical horseshoe Gibbs implementation, while achieving the same level of accuracy. We also show that our joint-network proposal successfully leverages shared edge-specific information between networks while still retaining differences, outperforming state-of-the-art methods at any level of network similarity.


翻译:网络模型是建模复杂关联的有用工具。如果假定高斯图模型,则条件独立性由数据的逆协方差(精度)矩阵的非零条目确定。贝叶斯图马蹄蛤估计器提供了精度矩阵推断的鲁棒且灵活的框架,因为它引入了本地,边特定参数,防止非零对角元素的过度收缩。然而,对于许多应用程序,例如统计组学,基于吉布斯采样的当前实现变得计算效率低下,甚至是不可行的高维度。此外,图马蹄蛤仅针对单个网络进行了制定,而在多个数据集的网络分析方面的兴趣增长,这些数据集可能共享常见结构。我们提出(i)一种可扩展的期望条件最大化(ECM)算法,用于获得图马蹄蛤中精度矩阵的后验模式,以及(ii)一种新颖的联合图马蹄蛤估计器,它在多个相关网络之间借用信息来提高估计。我们展示了在模拟和实际组学数据上,我们的单网络ECM方法比现有的图马蹄蛤吉布斯实现更具扩展性,而且实现了相同的精度水平。我们还展示了我们的联合网络提议成功利用了网络之间共享的边特异信息,同时仍保留差异,以在任何网络相似性水平下胜过最先进的方法。

0
下载
关闭预览

相关内容

【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
专知会员服务
42+阅读 · 2020年12月18日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月1日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
27+阅读 · 2020年6月19日
VIP会员
相关VIP内容
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
专知会员服务
42+阅读 · 2020年12月18日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员