This paper focuses on online occupancy mapping and real-time collision checking onboard an autonomous robot navigating in a large unknown environment. Commonly used voxel and octree map representations can be easily maintained in a small environment but have increasing memory requirements as the environment grows. We propose a fundamentally different approach for occupancy mapping, in which the boundary between occupied and free space is viewed as the decision boundary of a machine learning classifier. This work generalizes a kernel perceptron model which maintains a very sparse set of support vectors to represent the environment boundaries efficiently. We develop a probabilistic formulation based on Relevance Vector Machines, allowing robustness to measurement noise and probabilistic occupancy classification, supporting autonomous navigation. We provide an online training algorithm, updating the sparse Bayesian map incrementally from streaming range data, and an efficient collision-checking method for general curves, representing potential robot trajectories. The effectiveness of our mapping and collision checking algorithms is evaluated in tasks requiring autonomous robot navigation and active mapping in unknown environments.
翻译:本文侧重于在大型未知环境中自主驾驶的机器人上在线占用绘图和实时碰撞检查。 常用的 voxel 和 octree 地图显示在小环境中可以很容易地保持,但随着环境的不断增长,可以增加记忆要求。 我们提出了一种基本不同的占用绘图方法, 将占用空间和自由空间之间的边界视为机器学习分类师的决定边界。 这项工作概括了内核透视模型, 该模型维持着非常稀少的支持矢量,以高效地代表环境边界。 我们开发了一种基于相关性矢量机的概率配方, 使测量噪音和概率占用分类具有稳健性, 支持自主导航。 我们提供了一种在线培训算法, 从流域数据中逐步更新稀有的巴伊斯地图, 以及代表潜在机器人轨迹的一般曲线的高效碰撞校验方法。 我们的测绘和碰撞校准算法的效力是在需要自主机器人导航和在未知环境中积极绘图的任务中得到评估的。