We present Terrain Traversability Mapping (TTM), a real-time mapping approach for terrain traversability estimation and path planning for autonomous excavators in an unstructured environment. We propose an efficient learning-based geometric method to extract terrain features from RGB images and 3D pointclouds and incorporate them into a global map for planning and navigation for autonomous excavation. Our method used the physical characteristics of the excavator, including maximum climbing degree and other machine specifications, to determine the traversable area. Our method can adapt to changing environments and update the terrain information in real-time. Moreover, we prepare a novel dataset, Autonomous Excavator Terrain (AET) dataset, consisting of RGB images from construction sites with seven categories according to navigability. We integrate our mapping approach with planning and control modules in an autonomous excavator navigation system, which outperforms previous method by 49.3% in terms of success rate based on existing planning schemes. With our mapping the excavator can navigate through unstructured environments consisting of deep pits, steep hills, rock piles, and other complex terrain features.
翻译:我们提出地形可变性绘图(TTM),这是在无结构环境中进行地形可移动性估计和自主挖掘器路径规划的实时地形可移动性估算方法;我们提议采用基于学习的高效几何方法,从RGB图像和3D点云中提取地形特征,并将其纳入自主挖掘规划和导航的全球地图;我们的方法使用挖掘机的物理特征,包括最高爬度和其他机器规格,以确定可穿越的区域;我们的方法可以适应不断变化的环境,实时更新地形信息;此外,我们还准备了一套新型数据集,即自动挖掘机Terrain(AET)数据集,由建筑地点的RGB图像组成,其中七个类别与通航性相符;我们将我们的测绘方法与规划和控制模块整合到自主挖掘机导航系统中,该系统在现有规划计划的成功率方面比以往方法高出49.3%;通过测绘,挖掘机可以通过由深坑、陡峭山、岩堆和其他复杂地形构成的不结构化环境导航。