This paper addresses the fast replanning problem in dynamic environments with moving obstacles. Since for randomly moving obstacles the future states are unpredictable, the proposed method, called SMARRT, reacts to obstacle motions and revises the path in real-time based on the current interfering obstacle state (i.e., position and velocity). SMARRT is fast and efficient and performs collision checking only on the partial path segment close to the robot within a feasibility checking horizon. If the path is infeasible, then tree parts associated with the path inside the horizon are pruned while maintaining the maximal tree structure of already-explored regions. Then, a multi-resolution utility map is created to capture the environmental information used to compute the replanning utility for each cell on the multi-scale tiling. A hierarchical searching method is applied on the map to find the sampling cell efficiently. Finally, uniform samples are drawn within the sampling cell for fast replanning. The SMARRT method is validated via simulation runs, and the results are evaluated in comparison to four existing methods. The SMARRT method yields significant improvements in travel time, replanning time, and success rate compared against the existing methods.


翻译:本文用移动障碍处理动态环境中动态环境中的快速再规划问题。 由于随机移动障碍的未来状态是无法预测的,因此,拟议的方法称为SMARRT,对阻力动作作出反应,并根据目前的干扰障碍状态(即位置和速度)实时修改路径。SMARRT是快速和高效的,仅在与机器人相近的部分路径段进行碰撞检查,在可行性检查的视野内进行碰撞检查。如果路径不可行,那么与地平线内路径相关的树块会被切割,同时保持已经勘探的区域的最大树结构。随后,创建了多分辨率的实用图,以捕捉用于计算每个单元格在多尺度平标上重新规划效用的环境信息。在地图上应用了等级搜索方法,以便高效率地找到取样槽。最后,在取样槽内抽取统一的样本,以便快速进行再规划。SMARRT方法通过模拟运行进行验证,并将结果与四种现有方法进行比较。SMARRT方法在旅行时间、重新规划时间和成功率方面带来显著的改进。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
【ICML2020】图神经网络基准,53页ppt,NUS-Xavier Bresson
专知会员服务
57+阅读 · 2020年7月18日
ACL2020接受论文列表公布,571篇长文208篇短文
专知会员服务
66+阅读 · 2020年5月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年11月20日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Latent Space Modelling of Hypergraph Data
Arxiv
0+阅读 · 2021年11月2日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
【ICML2020】图神经网络基准,53页ppt,NUS-Xavier Bresson
专知会员服务
57+阅读 · 2020年7月18日
ACL2020接受论文列表公布,571篇长文208篇短文
专知会员服务
66+阅读 · 2020年5月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年11月20日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员