3D scenes are dominated by a large number of background points, which is redundant for the detection task that mainly needs to focus on foreground objects. In this paper, we analyze major components of existing sparse 3D CNNs and find that 3D CNNs ignore the redundancy of data and further amplify it in the down-sampling process, which brings a huge amount of extra and unnecessary computational overhead. Inspired by this, we propose a new convolution operator named spatial pruned sparse convolution (SPS-Conv), which includes two variants, spatial pruned submanifold sparse convolution (SPSS-Conv) and spatial pruned regular sparse convolution (SPRS-Conv), both of which are based on the idea of dynamically determining crucial areas for redundancy reduction. We validate that the magnitude can serve as important cues to determine crucial areas which get rid of the extra computations of learning-based methods. The proposed modules can easily be incorporated into existing sparse 3D CNNs without extra architectural modifications. Extensive experiments on the KITTI, Waymo and nuScenes datasets demonstrate that our method can achieve more than 50% reduction in GFLOPs without compromising the performance.
翻译:3D 场景以大量背景点为主, 这对探测任务来说是多余的, 主要需要关注前景对象。 在本文中, 我们分析了现有稀有的 3D CNN 的主要组成部分, 发现 3D CNN 忽略了数据冗余, 并在下层取样过程中进一步放大了数据, 从而带来大量额外和不必要的计算间接成本。 受此启发, 我们提议一个新的演算操作员, 名为空间小盘稀释共振( SPS- Conv), 包括两个变体, 空间小盘旋稀释( SPS- Conv) 和空间小盘旋( SPRS- Conv) 常规稀释( SPRS- Conv), 两者都基于动态地决定裁员关键领域的想法。 我们确认, 数量可以作为重要的提示, 确定关键领域, 消除基于学习方法的超量计算。 提议的模块可以很容易纳入现有的稀薄的 3D CNN CNN 中, 而无需额外的建筑修改 。 在 KITTI、 Waymo 和 nuscenes 数据集上进行广泛的实验, 显示我们的方法可以实现 GFLOP 50%以上 。