Deep learning (DL) has big-data processing capabilities that are as good, or even better, than those of humans in many real-world domains, but at the cost of high energy requirements that may be unsustainable in some applications and of errors, that, though infrequent, can be large. We hypothesise that a fundamental weakness of DL lies in its intrinsic dependence on integrate-and-fire point neurons that maximise information transmission irrespective of whether it is relevant in the current context or not. This leads to unnecessary neural firing and to the feedforward transmission of conflicting messages, which makes learning difficult and processing energy inefficient. Here we show how to circumvent these limitations by mimicking the capabilities of context-sensitive neocortical neurons that receive input from diverse sources as a context to amplify and attenuate the transmission of relevant and irrelevant information, respectively. Our results show that, in the case of audio-visual processing, nets composed of context-sensitive local processors can use video information as a context that guides audio signal processing towards the currently relevant information far more effectively and efficiently than current forms of DL.


翻译:深度学习(DL)具有与许多现实世界领域人类同样好甚至更好的大数据处理能力,但代价是高能源需求,在某些应用和错误中可能无法持续,尽管这种需求并不常见,但可能很大。我们假设,DL的根本弱点在于其内在依赖综合和发光点神经元,这种神经元能够最大限度地扩大信息传输,而不论在目前情况下是否相关。这导致不必要的神经发射和向前进传送相互冲突的信息,使得学习困难和处理能源效率低下。我们在这里展示了如何通过模仿环境敏感、对环境敏感、新皮质神经元的能力来规避这些限制,这些神经元接收来自不同来源的投入,作为扩大和减少相关和不相关信息的传输的背景。我们的结果表明,就视听处理而言,由对背景敏感的本地处理器组成的网络可以使用视频信息作为背景,引导音频信号处理转向当前相关信息,比当前DL形式更有效和效率更高。</s>

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
60+阅读 · 2020年3月19日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员