In autonomous driving, the end-to-end (E2E) driving approach that predicts vehicle control signals directly from sensor data is rapidly gaining attention. To learn a safe E2E driving system, one needs an extensive amount of driving data and human intervention. Vehicle control data is constructed by many hours of human driving, and it is challenging to construct large vehicle control datasets. Often, publicly available driving datasets are collected with limited driving scenes, and collecting vehicle control data is only available by vehicle manufacturers. To address these challenges, this letter proposes the first fully self-supervised learning framework, self-supervised imitation learning (SSIL), for E2E driving, based on the self-supervised regression learning framework. The proposed SSIL framework can learn E2E driving networks without using driving command data. To construct pseudo steering angle data, proposed SSIL predicts a pseudo target from the vehicle's poses at the current and previous time points that are estimated with light detection and ranging sensors. In addition, we propose two modified E2E driving networks that predict driving commands depending on high-level instruction. Our numerical experiments with three different benchmark datasets demonstrate that the proposed SSIL framework achieves very comparable E2E driving accuracy with the supervised learning counterpart.
翻译:暂无翻译