Conventional de-noising methods rely on the assumption that all samples are independent and identically distributed, so the resultant classifier, though disturbed by noise, can still easily identify the noises as the outliers of training distribution. However, the assumption is unrealistic in large-scale data that is inevitably long-tailed. Such imbalanced training data makes a classifier less discriminative for the tail classes, whose previously "easy" noises are now turned into "hard" ones -- they are almost as outliers as the clean tail samples. We introduce this new challenge as Noisy Long-Tailed Classification (NLT). Not surprisingly, we find that most de-noising methods fail to identify the hard noises, resulting in significant performance drop on the three proposed NLT benchmarks: ImageNet-NLT, Animal10-NLT, and Food101-NLT. To this end, we design an iterative noisy learning framework called Hard-to-Easy (H2E). Our bootstrapping philosophy is to first learn a classifier as noise identifier invariant to the class and context distributional changes, reducing "hard" noises to "easy" ones, whose removal further improves the invariance. Experimental results show that our H2E outperforms state-of-the-art de-noising methods and their ablations on long-tailed settings while maintaining a stable performance on the conventional balanced settings. Datasets and codes are available at https://github.com/yxymessi/H2E-Framework


翻译:常规除尘方法所依据的假设是,所有样品都是独立和完全分布的,因此,结果分类者虽然受到噪音的干扰,仍然可以很容易地将噪音确定为培训分布的异常点。然而,这种假设对于不可避免的长尾类的大规模数据来说是不现实的。这种不平衡的培训数据使得分类者对尾类的区别性较小,它们以前“容易”的噪音现在变成了“硬的”噪音,它们几乎和干净的尾巴样品一样有外向性。我们引入了象Noisy Long-Tailed分类(NLT)这样的新挑战。我们毫不奇怪地发现,大多数不注意方法都无法确定硬噪音,导致拟议的NLT的三个基准(图像网-NLT、Morest10-NLT和Food101-NLT)的性能显著下降。我们为此设计了一个叫“硬到Easy(H2E2E)”的热度学习框架。我们的踢踏式哲学是首先学习一个分类器,作为对课堂和背景分布变化的噪音识别器。我们发现,“硬性2级的噪音定型”的噪音在磁性结构中,在“稳定的磁性变变变变换法中,在“稳定的磁性变变换法中,在“稳定式”的磁性变换式的磁性变换制方法上显示中,在“稳定式的磁性变换式的磁制方法在“稳定性变换式的磁。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
42+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Few-Shot Object Detection in Unseen Domains
Arxiv
0+阅读 · 2022年9月19日
Arxiv
14+阅读 · 2022年5月6日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
42+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员