We propose a novel end-to-end RGB-D SLAM, iDF-SLAM, which adopts a feature-based deep neural tracker as the front-end and a NeRF-style neural implicit mapper as the back-end. The neural implicit mapper is trained on-the-fly, while though the neural tracker is pretrained on the ScanNet dataset, it is also finetuned along with the training of the neural implicit mapper. Under such a design, our iDF-SLAM is capable of learning to use scene-specific features for camera tracking, thus enabling lifelong learning of the SLAM system. Both the training for the tracker and the mapper are self-supervised without introducing ground truth poses. We test the performance of our iDF-SLAM on the Replica and ScanNet datasets and compare the results to the two recent NeRF-based neural SLAM systems. The proposed iDF-SLAM demonstrates state-of-the-art results in terms of scene reconstruction and competitive performance in camera tracking.
翻译:我们提出一个新的端到端 RGB-D SLAM, iDF- SLAM, 将基于地貌的深神经跟踪器作为前端, 和 NERF 式神经隐性映射器作为后端。 神经隐性映射器是现场培训的, 尽管神经跟踪器在扫描网数据集上已经接受了预先培训, 但它也与神经隐性映射器的培训同时进行了微调。 在这样的设计下, 我们的iDF- SLAM 能够学习使用特定场景的功能进行相机跟踪, 从而能够终身学习SLAM 系统。 跟踪器和映射器的培训都是自我监督的, 但不引入地面真相配置 。 我们测试我们的iDF- SLAM 在复制和扫描网数据集上的性能, 并将结果与最近两个基于NRFS- SLM 的神经探测器系统进行比较。 拟议的 iDF- SLAM 展示了现场重建以及相机跟踪竞争性性能取得的最新结果 。