Since point clouds obtained from lidar are spatially discrete and non-repetitive, directly using point clouds to achieve object data association and robust state estimation is not a simple task. Further, tracking and analyzing the object states facilitates determining how they are involved in localization and mapping works. In this paper, we propose a least-squares estimator incorporating semantic 3D bounding boxes and geometric point clouds to achieve accurate and robust tracking of multiple objects. Then, the proposed tracker is integrated into a multi-object lidar odometry (MLO) system using only point clouds as input. By analyzing object motion states, the mapping module uses static objects and environmental features to eliminate accumulated errors. Meanwhile, the MLO system provides continuous object trajectories in map coordinate. Finally, we evaluate the effectiveness of the proposed semantic geometric fusion multi-object tracking (SGF-MOT) module and the localization accuracy of the MLO system under the public KITTI dataset.
翻译:由于从Lidar获得的点云是空间离散的和非重复的,直接使用点云实现对象数据关联和稳健的国家估计并非一项简单的任务。 此外,跟踪和分析对象状态有助于确定它们如何参与本地化和绘图工作。 在本文件中,我们建议使用一个最小平方天线估计值,其中包括语义三维边框和几何点云,以便准确和有力地跟踪多个物体。然后,将拟议的跟踪器纳入一个多球点利达尔odorict(MLO)系统,仅使用点云作为输入。通过分析物体运动状态,绘图模块使用静态对象和环境特征来消除累积错误。同时,MLO系统提供了地图协调中的连续对象轨迹。最后,我们评估了拟议的语义几度融合多轨道跟踪模块的有效性,以及在公开的KITTI数据集下MLO系统的本地化精度。