Principal stratification is essential for revealing causal mechanisms involving post-treatment intermediate variables. Principal stratification analysis with continuous intermediate variables is increasingly common but challenging due to the infinite principal strata and the nonidentifiability and nonregularity of principal causal effects. Inspired by recent research, we resolve these challenges by first using a flexible copula-based principal score model to identify principal causal effect under weak principal ignorability. We then target the local functional substitute of principal causal effect, which is statistically regular and can accurately approximate principal causal effect with vanishing bandwidth. We simplify the full efficient influence function of the local functional substitute by considering its oracle-scenario alternative. This leads to a computationally efficient and straightforward estimator for the local functional substitute and principal causal effect with vanishing bandwidth. We prove the double robustness and statistical optimality of our proposed estimator, and derive its asymptotic normality for inferential purposes. We illustrate the appealing statistical performance of our proposed estimator in simulations, and apply it to two real datasets with intriguing scientific discoveries.
翻译:暂无翻译