Scalable isomorphic physical neural networks (PNNs) are emerging NN acceleration paradigms for their high-bandwidth, in-propagation computation. Despite backpropagation (BP)-based training is often the industry standard for its robustness and fast gradient convergences, existing BP-PNN training methods need to truncate the propagation of analogue signal at each layer and acquire accurate hidden neuron readouts for deep networks. This compromises the incentive of PNN for fast in-propagation processing. In addition, the required readouts introduce massive bottlenecks due to the conversions between the analogue-digital interfaces to shuttle information across. These factors limit both the time and energy efficiency during training. Here we introduce the asymmetrical training (AT) method, a BP-based method that can perform training on an encapsulated deep network, where the information propagation is maintained within the analogue domain until the output layer. AT's minimum information access bypass analogue-digital interface bottleneck wherever possible. For any deep network structure, AT offers significantly improved time and energy efficiency compared to existing BP-PNN methods, and scales well for large network sizes. We demonstrated AT's error-tolerant and calibration-free training for encapsulated integrated photonic deep networks to achieve near ideal BP performances. AT's well-behaved training is demonstrated repeatably across different datasets and network structures
翻译:暂无翻译