We propose a numerical algorithm for the computation of multi-marginal optimal transport (MMOT) problems involving general probability measures that are not necessarily discrete. By developing a relaxation scheme in which marginal constraints are replaced by finitely many linear constraints and by proving a specifically tailored duality result for this setting, we approximate the MMOT problem by a linear semi-infinite optimization problem. Moreover, we are able to recover a feasible and approximately optimal solution of the MMOT problem, and its sub-optimality can be controlled to be arbitrarily close to 0 under mild conditions. The developed relaxation scheme leads to a numerical algorithm which can compute a feasible approximate optimizer of the MMOT problem whose theoretical sub-optimality can be chosen to be arbitrarily small. Besides the approximate optimizer, the algorithm is also able to compute both an upper bound and a lower bound for the optimal value of the MMOT problem. The difference between the computed bounds provides an explicit sub-optimality bound for the computed approximate optimizer. We demonstrate the proposed algorithm in three numerical experiments involving an MMOT problem that stems from fluid dynamics, the Wasserstein barycenter problem, and a large-scale MMOT problem with 100 marginals. We observe that our algorithm is capable of computing high-quality solutions of these MMOT problems and the computed sub-optimality bounds are much less conservative than their theoretical upper bounds in all the experiments.
翻译:暂无翻译