With more and more data being collected, data-driven modeling methods have been gaining in popularity in recent years. While physically sound, classical gray-box models are often cumbersome to identify and scale, and their accuracy might be hindered by their limited expressiveness. On the other hand, classical black-box methods, typically relying on Neural Networks (NNs) nowadays, often achieve impressive performance, even at scale, by deriving statistical patterns from data. However, they remain completely oblivious to the underlying physical laws, which may lead to potentially catastrophic failures if decisions for real-world physical systems are based on them. Physically Consistent Neural Networks (PCNNs) were recently developed to address these aforementioned issues, ensuring physical consistency while still leveraging NNs to attain state-of-the-art accuracy. In this work, we scale PCNNs to model building temperature dynamics and propose a thorough comparison with classical gray-box and black-box methods. More precisely, we design three distinct PCNN extensions, thereby exemplifying the modularity and flexibility of the architecture, and formally prove their physical consistency. In the presented case study, PCNNs are shown to achieve state-of-the-art accuracy, even outperforming classical NN-based models despite their constrained structure. Our investigations furthermore provide a clear illustration of NNs achieving seemingly good performance while remaining completely physics-agnostic, which can be misleading in practice. While this performance comes at the cost of computational complexity, PCNNs on the other hand show accuracy improvements of 17-35% compared to all other physically consistent methods, paving the way for scalable physically consistent models with state-of-the-art performance.


翻译:随着越来越多的数据被收集,数据驱动建模方法在近年来变得越来越受欢迎。虽然经典的灰盒模型在物理上是正确的,但通常难以识别和扩展,其精度可能受到其有限表达能力的限制。另一方面,经典的黑盒方法,通常依赖于神经网络(NN),现在通常可以在大规模情况下取得令人印象深刻的性能,通过从数据中推导出统计模式来实现。然而,它们仍然完全忽略了潜在的物理定律,这可能会导致基于它们的真实世界物理系统决策导致潜在的灾难性失误。最近开发了物理一致神经网络(PCNN),以解决这些前述问题,同时确保物理一致性,同时利用NN以实现最先进的准确性。在这项工作中,我们将PCNN扩展到模拟建筑物温度动态,并提出与经典灰盒和黑盒方法的彻底比较。更具体地说,我们设计了三种不同的PCNN扩展,从而举例说明了体系结构的模块化和灵活性,并正式证明了它们的物理一致性。在提出的案例研究中,PCNN显示出具有最先进的准确性,即使在其受限结构方面也优于传统的基于NN的模型。我们的调查进一步提供了神经网络实现表现良好,但仍然完全忽略物理的明显例证,这在实践中可能会误导人。虽然这种性能的代价是计算复杂度,但PCNNs另一方面显示出比所有其他物理一致方法有17-35%的准确度提高,为具有最先进性能的可扩展的物理一致模型铺平道路。

0
下载
关闭预览

相关内容

【2022新书】机器学习基础,225页pdf,Machine Learning The Basics
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
1+阅读 · 2023年5月15日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
12+阅读 · 2020年8月3日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
Arxiv
15+阅读 · 2018年6月23日
VIP会员
相关VIP内容
【2022新书】机器学习基础,225页pdf,Machine Learning The Basics
相关资讯
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员