In recent years, channel attention mechanism has been widely investigated due to its great potential in improving the performance of deep convolutional neural networks (CNNs) in many vision tasks. However, in most of the existing methods, only the output of the adjacent convolution layer is fed into the attention layer for calculating the channel weights. Information from other convolution layers has been ignored. With these observations, a simple strategy, named Bridge Attention Net (BA-Net), is proposed in this paper for better performance with channel attention mechanisms. The core idea of this design is to bridge the outputs of the previous convolution layers through skip connections for channel weights generation. Based on our experiment and theory analysis, we find that features from previous layers also contribute to the weights significantly. The Comprehensive evaluation demonstrates that the proposed approach achieves state-of-the-art(SOTA) performance compared with the existing methods in accuracy and speed. which shows that Bridge Attention provides a new perspective on the design of neural network architectures with great potential in improving performance. The code is available at https://github.com/zhaoy376/Bridge-Attention.
翻译:近年来,由于在改善深层神经神经网络(CNNs)的性能方面具有巨大潜力,因此对频道关注机制进行了广泛调查,因为该机制在许多视觉任务中具有巨大的潜力,但是,在大多数现有方法中,只有相邻的电动层的输出被注入到计算频道重量的注意层中,其他电动层的信息被置之不理;通过这些观察,本文件提出了一个简单的战略,即称为BA-Net(BA-Net),用频道关注机制更好地进行工作;这一设计的核心思想是通过跳过频道重量生成的连接来弥合上层的输出。根据我们的实验和理论分析,我们发现前层的特征也大大地促进了这些重量。全面评估表明,拟议的方法与现有的准确和速度方法相比,达到了最先进的(SOTA)性能。这表明,“Bridge 注意”为设计有极大潜力改进性能的神经网络结构提供了新的视角。该代码可在https://github.com/zhaoy376/Bridge-Attlement上查阅。