Recent research on Generalized Zero-Shot Learning (GZSL) has focused primarily on generation-based methods. However, current literature has overlooked the fundamental principles of these methods and has made limited progress in a complex manner. In this paper, we aim to deconstruct the generator-classifier framework and provide guidance for its improvement and extension. We begin by breaking down the generator-learned unseen class distribution into class-level and instance-level distributions. Through our analysis of the role of these two types of distributions in solving the GZSL problem, we generalize the focus of the generation-based approach, emphasizing the importance of (i) attribute generalization in generator learning and (ii) independent classifier learning with partially biased data. We present a simple method based on this analysis that outperforms SotAs on four public GZSL datasets, demonstrating the validity of our deconstruction. Furthermore, our proposed method remains effective even without a generative model, representing a step towards simplifying the generator-classifier structure. Our code is available at \url{https://github.com/cdb342/DGZ}.
翻译:最近关于普遍零热学习(GZSL)的研究主要侧重于以代为主的方法,然而,目前的文献忽视了这些方法的基本原则,并以复杂的方式取得了有限的进展。在本文中,我们的目标是解构发电机分类框架,并为改进和扩展该框架提供指导。我们首先将发电机学得的无形类分布分成分为等级和例级分布。我们通过分析这两类分配在解决GZSL问题中的作用,推广了以代为主的方法的重点,强调(一) 在发电机学习中赋予通用性的重要性,以及(二) 独立分类者学习带有部分偏差的数据的重要性。我们提出基于这一分析的简单方法,该方法优于四个公共GZSLS数据集的SotA,表明我们解构工作的有效性。此外,我们提出的方法即使没有基因化模型,也依然有效,这是简化发电机-类结构的一个步骤。我们的代码可在以下网站查阅: url{https://github.com/cd342/DGQ}。</s>