The aim of this article is further development of the theory of linear difference equations with constant coefficients. We present a new algorithm for calculating the solution to the Cauchy problem for a three-dimensional difference equation with constant coefficients in a parallelepiped at the point using the coefficients of the difference equation and Cauchy data. The implemented algorithm is the next significant achievement in a series of articles justifying the Apanovich and Leinartas' theorems about the solvability and well-posedness of the Cauchy problem. We also use methods of computer algebra since the three-dimensional case usually demands extended calculations.
翻译:本条的目的是进一步发展具有不变系数的线性差异方程式理论。我们提出了一种新的算法,用于计算Cauchy问题的解决办法,即三维差异方程式,在使用差异方程式的系数和Cauchy数据时,在平行管道中以恒定系数计算恒定系数的三维差异方程式。执行的算法是一系列条款中为Apanovich和Leinartas关于Cauchy问题的可溶性和稳妥性作出解释的下一个重大成就。我们还使用计算机代数法,因为三维方程式通常需要长期计算。