The Oldenburger-Kolakoski sequence is the only infinite sequence over the alphabet $\{1,2\}$ that starts with $1$ and is its own run-length encoding. In the present work, we take a step back from this largely known and studied sequence by introducing some randomness in the choice of the letters written. This enables us to provide some results on the convergence of the density of $1$'s in the resulting sequence. When the choice of the letters is given by an infinite sequence of i.i.d. random variables or by a Markov chain, the average densities of letters converge. Moreover, in the case of i.i.d. random variables, we are able to prove that the densities even almost surely converge.
翻译:Oldenburger- Kolakoski 序列是字母单数上唯一的无限序列 $1,2 $1,2 $, 以美元开始, 并且是它自己的运行长编码 。 在目前的工作中, 我们从这个广为人知和研究的序列后退一步, 在选择所写字母时引入了某种随机性 。 这让我们能够提供一些结果, 显示所产生序列中$1 的密度的趋同。 当字母的选择是由 i. d. 随机变量或 Markov 链的无限序列给出时, 字母的平均密度会趋同。 此外, 在 i. d. 随机变量的情况下, 我们能够证明密度甚至几乎可以肯定地一致 。