We present a novel method for temporal coherent reconstruction and tracking of clothed humans. Given a monocular RGB-D sequence, we learn a person-specific body model which is based on a dynamic surface function network. To this end, we explicitly model the surface of the person using a multi-layer perceptron (MLP) which is embedded into the canonical space of the SMPL body model. With classical forward rendering, the represented surface can be rasterized using the topology of a template mesh. For each surface point of the template mesh, the MLP is evaluated to predict the actual surface location. To handle pose-dependent deformations, the MLP is conditioned on the SMPL pose parameters. We show that this surface representation as well as the pose parameters can be learned in a self-supervised fashion using the principle of analysis-by-synthesis and differentiable rasterization. As a result, we are able to reconstruct a temporally coherent mesh sequence from the input data. The underlying surface representation can be used to synthesize new animations of the reconstructed person including pose-dependent deformations.
翻译:我们展示了一种新的方法,用于对有衣人进行时间一致性的重建与跟踪。 在一个单眼 RGB- D 序列中, 我们学习了个人特有的身体模型, 模型以动态表面功能网络为基础。 为此, 我们明确地用嵌入 SMPL 机体模型的圆形空间的多层透视器( MLP) 来模拟人的表面。 经典前向演化, 代表的表面可以使用模板网状网格的地形学进行分解。 对于模板网格的每个表面点, MLP 都进行了评估, 以预测实际表面位置。 为了处理基于外观的变形, MLP 以 SMPL 显示参数为条件。 我们显示, 这种表面的显示以及表面参数可以使用自我控制的方式, 使用分析合成合成的合成和不同的光化原理。 因此, 我们能够从输入数据中重建一个时间性一致的网格序列。 基础的表层代表可以用来合成被重建的人的新动动画, 包括基于外观的变形变形。