We present a novel method for temporal coherent reconstruction and tracking of clothed humans. Given a monocular RGB-D sequence, we learn a person-specific body model which is based on a dynamic surface function network. To this end, we explicitly model the surface of the person using a multi-layer perceptron (MLP) which is embedded into the canonical space of the SMPL body model. With classical forward rendering, the represented surface can be rasterized using the topology of a template mesh. For each surface point of the template mesh, the MLP is evaluated to predict the actual surface location. To handle pose-dependent deformations, the MLP is conditioned on the SMPL pose parameters. We show that this surface representation as well as the pose parameters can be learned in a self-supervised fashion using the principle of analysis-by-synthesis and differentiable rasterization. As a result, we are able to reconstruct a temporally coherent mesh sequence from the input data. The underlying surface representation can be used to synthesize new animations of the reconstructed person including pose-dependent deformations.


翻译:我们展示了一种新的方法,用于对有衣人进行时间一致性的重建与跟踪。 在一个单眼 RGB- D 序列中, 我们学习了个人特有的身体模型, 模型以动态表面功能网络为基础。 为此, 我们明确地用嵌入 SMPL 机体模型的圆形空间的多层透视器( MLP) 来模拟人的表面。 经典前向演化, 代表的表面可以使用模板网状网格的地形学进行分解。 对于模板网格的每个表面点, MLP 都进行了评估, 以预测实际表面位置。 为了处理基于外观的变形, MLP 以 SMPL 显示参数为条件。 我们显示, 这种表面的显示以及表面参数可以使用自我控制的方式, 使用分析合成合成的合成和不同的光化原理。 因此, 我们能够从输入数据中重建一个时间性一致的网格序列。 基础的表层代表可以用来合成被重建的人的新动动画, 包括基于外观的变形变形。

0
下载
关闭预览

相关内容

Surface 是微软公司( Microsoft)旗下一系列使用 Windows 10(早期为 Windows 8.X)操作系统的电脑产品,目前有 Surface、Surface Pro 和 Surface Book 三个系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由时任微软 CEO 史蒂夫·鲍尔默发布于在洛杉矶举行的记者会,2012 年 10 月 26 日上市销售。
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
“CVPR 2020 接受论文列表 1470篇论文都在这了
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【ECCV2018】24篇论文代码实现
专知
17+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月1日
Arxiv
37+阅读 · 2021年2月10日
VIP会员
相关VIP内容
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【ECCV2018】24篇论文代码实现
专知
17+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员