Topology inference for networked dynamical systems (NDSs) plays a crucial role in many areas. Knowledge of the system topology can aid in detecting anomalies, spotting trends, predicting future behavior and so on. Different from the majority of pioneering works, this paper investigates the principles and performances of topology inference from the perspective of node causality and correlation. Specifically, we advocate a comprehensive analysis framework to unveil the mutual relationship, convergence and accuracy of the proposed methods and other benchmark methods, i.e., the Granger and ordinary least square (OLS) estimators. Our method allows for unknown observation noises, both asymptotic and marginal stabilities for NDSs, while encompasses a correlation-based modification design to alleviate performance degradation in small observation scale. To explicitly demonstrate the inference performance of the estimators, we leverage the concentration measure in Gaussian space, and derive the non-asymptotic rates of the inference errors for linear time-invariant (LTI) cases. Considering when the observations are not sufficient to support the estimators, we provide an excitation-based method to infer the one-hop and multi-hop neighbors with probability guarantees. Furthermore, we point out the theoretical results can be extended to switching topologies and nonlinear dynamics cases. Extensive simulations highlight the outperformance of the proposed method.
翻译:网络动态系统(NDS)的地形推断在许多领域发挥着关键作用。对系统地形学的了解有助于发现异常现象、发现趋势、预测未来行为等等。与大多数开创性作品不同,本文从节点因果关系和相关性的角度调查地形推断的原则和表现。具体地说,我们主张一个全面分析框架,以揭示拟议方法和其他基准方法的相互关系、趋同和准确性,即Granger和普通最小平方(OLS)估计器。我们的方法允许NDS出现未知的观测噪音,既有零点变化趋势,也有边际稳定等。我们的方法包括基于相关性的修改设计,以缓解小观测规模的性能退化。为了明确显示估计者的推断性能,我们利用高空空间的集中度测量,并得出线性时空直线性直线直线直线直线度偏角(LTI)的推断误差率。我们考虑到当观测不足以支持单一的观测结果时,即零度和边际稳定度,我们提供了在高空级度上进行选择的方法。我们提供了一种选择的方法。我们可以提供一种选择的方法,用以推断结果。