Our work focuses on the development of a learnable neural representation of human pose for advanced AI assisted animation tooling. Specifically, we tackle the problem of constructing a full static human pose based on sparse and variable user inputs (e.g. locations and/or orientations of a subset of body joints). To solve this problem, we propose a novel neural architecture that combines residual connections with prototype encoding of a partially specified pose to create a new complete pose from the learned latent space. We show that our architecture outperforms a baseline based on Transformer, both in terms of accuracy and computational efficiency. Additionally, we develop a user interface to integrate our neural model in Unity, a real-time 3D development platform. Furthermore, we introduce two new datasets representing the static human pose modeling problem, based on high-quality human motion capture data, which will be released publicly along with model code.
翻译:我们的工作重点是为先进的人工智能辅助动画工具开发人类外形的可学习神经表象。 具体地说,我们解决了根据稀有和可变用户投入(例如某组合体的位置和/或方向)构建一个完全静止的人类外形的问题。 为了解决这个问题,我们建议建立一个新型神经结构,将残余连接与部分特定外形的原型编码结合起来,以便从已学的潜在空间创造出一个新的完整的外形。我们表明,我们的建筑在准确性和计算效率方面都超过了基于变异器的基线。此外,我们开发了一个用户界面,以整合我们的神经模型,一个实时的3D发展平台。此外,我们引入了两个新的数据集,代表静止的人类外形模型问题,其基础是高质量的人类运动捕获数据,这些数据将与模型代码一起公开发布。