Active Surface Models have a long history of being useful to model complex 3D surfaces but only Active Contours have been used in conjunction with deep networks, and then only to produce the data term as well as meta-parameter maps controlling them. In this paper, we advocate a much tighter integration. We introduce layers that implement them that can be integrated seamlessly into Graph Convolutional Networks to enforce sophisticated smoothness priors at an acceptable computational cost. We will show that the resulting Deep Active Surface Models outperform equivalent architectures that use traditional regularization loss terms to impose smoothness priors for 3D surface reconstruction from 2D images and for 3D volume segmentation.


翻译:活跃表面模型长期以来一直有用于模拟复杂的 3D 表面,但只有活表面模型才与深层网络结合使用,然后仅用于生成数据术语和元参数图。在本文件中,我们主张更紧密地整合。我们引入了可以无缝地融入图层变迁网络的层层,以便以可接受的计算成本执行复杂的平滑前期。我们将显示,由此形成的深活表面模型优于类似的结构,这些结构使用传统的正规化损失术语,对二维图像和三维体积分解的三维表面重建进行平滑前置。

0
下载
关闭预览

相关内容

Surface 是微软公司( Microsoft)旗下一系列使用 Windows 10(早期为 Windows 8.X)操作系统的电脑产品,目前有 Surface、Surface Pro 和 Surface Book 三个系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由时任微软 CEO 史蒂夫·鲍尔默发布于在洛杉矶举行的记者会,2012 年 10 月 26 日上市销售。
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
35+阅读 · 2020年4月15日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
PRL导读-2018年120卷15期
中科院物理所
4+阅读 · 2018年4月23日
已删除
将门创投
5+阅读 · 2018年3月21日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月23日
An Analysis of Object Embeddings for Image Retrieval
Arxiv
4+阅读 · 2019年5月28日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
8+阅读 · 2019年1月8日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
PRL导读-2018年120卷15期
中科院物理所
4+阅读 · 2018年4月23日
已删除
将门创投
5+阅读 · 2018年3月21日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年7月23日
An Analysis of Object Embeddings for Image Retrieval
Arxiv
4+阅读 · 2019年5月28日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
8+阅读 · 2019年1月8日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Arxiv
15+阅读 · 2018年2月4日
Top
微信扫码咨询专知VIP会员