We present an algorithm for distributed networks to efficiently find a small vertex cut in the CONGEST model. Given a positive integer $\kappa$, our algorithm can, with high probability, either find $\kappa$ vertices whose removal disconnects the network or return that such $\kappa$ vertices do not exist. Our algorithm takes $\kappa^3\cdot \tilde{O}(D+\sqrt{n})$ rounds, where $n$ is the number of vertices in the network and $D$ denotes the network's diameter. This implies $\tilde{O}(D+\sqrt{n})$ round complexity whenever $\kappa=\text{polylog}(n)$. Prior to our result, a bound of $\tilde{O}(D)$ is known only when $\kappa=1,2$ [Parter, Petruschka DISC'22]. For $\kappa\geq 3$, this bound can be obtained only by an $O(\log n)$-approximation algorithm [Censor-Hillel, Ghaffari, Kuhn PODC'14], and the only known exact algorithm takes $O\left((\kappa\Delta D)^{O(\kappa)}\right)$ rounds, where $\Delta$ is the maximum degree [Parter DISC'19]. Our result answers an open problem by Nanongkai, Saranurak, and Yingchareonthawornchai [STOC'19].


翻译:我们为分布式网络提供了一个算法, 以有效找到 CONEST 模型中的小顶端切除。 如果一个正整数 $\ kappa $, 我们的算法可以极有可能地找到 $\ kappa $ vertics, 其删除会断开网络, 或返回这种$kappa$ vertics 不存在。 我们的算法需要$\ kappa\\ 3\ cdolt{O} (D\ qrt{n} ), 美元是网络中的顶数, 美元是网络的顶数, 美元是网络的直径数 。 这意味着当 $\ kapta{ (Dqrt{n} ) 时, 就会找到 $\ kapppa $( Petrochka discox) 。 对于 $\ kappeq 3x$, 这个底值只能通过 $ Oxal\\\\\ a calation, lax a crow, rmax a ex, exal.

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
25+阅读 · 2021年4月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
16+阅读 · 2022年11月1日
Arxiv
19+阅读 · 2020年7月13日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员