We present an algorithm for distributed networks to efficiently find a small vertex cut in the CONGEST model. Given a positive integer $\kappa$, our algorithm can, with high probability, either find $\kappa$ vertices whose removal disconnects the network or return that such $\kappa$ vertices do not exist. Our algorithm takes $\kappa^3\cdot \tilde{O}(D+\sqrt{n})$ rounds, where $n$ is the number of vertices in the network and $D$ denotes the network's diameter. This implies $\tilde{O}(D+\sqrt{n})$ round complexity whenever $\kappa=\text{polylog}(n)$. Prior to our result, a bound of $\tilde{O}(D)$ is known only when $\kappa=1,2$ [Parter, Petruschka DISC'22]. For $\kappa\geq 3$, this bound can be obtained only by an $O(\log n)$-approximation algorithm [Censor-Hillel, Ghaffari, Kuhn PODC'14], and the only known exact algorithm takes $O\left((\kappa\Delta D)^{O(\kappa)}\right)$ rounds, where $\Delta$ is the maximum degree [Parter DISC'19]. Our result answers an open problem by Nanongkai, Saranurak, and Yingchareonthawornchai [STOC'19].
翻译:我们为分布式网络提供了一个算法, 以有效找到 CONEST 模型中的小顶端切除。 如果一个正整数 $\ kappa $, 我们的算法可以极有可能地找到 $\ kappa $ vertics, 其删除会断开网络, 或返回这种$kappa$ vertics 不存在。 我们的算法需要$\ kappa\\ 3\ cdolt{O} (D\ qrt{n} ), 美元是网络中的顶数, 美元是网络的顶数, 美元是网络的直径数 。 这意味着当 $\ kapta{ (Dqrt{n} ) 时, 就会找到 $\ kapppa $( Petrochka discox) 。 对于 $\ kappeq 3x$, 这个底值只能通过 $ Oxal\\\\\ a calation, lax a crow, rmax a ex, exal.