Individual abnormal behaviors vary depending on crowd sizes, contexts, and scenes. Challenges such as partial occlusions, blurring, large-number abnormal behavior, and camera viewing occur in large-scale crowds when detecting, tracking, and recognizing individuals with abnormal behaviors. In this paper, our contribution is twofold. First, we introduce an annotated and labeled large-scale crowd abnormal behaviors Hajj dataset (HAJJv2). Second, we propose two methods of hybrid Convolutional Neural Networks (CNNs) and Random Forests (RFs) to detect and recognize Spatio-temporal abnormal behaviors in small and large-scales crowd videos. In small-scale crowd videos, a ResNet-50 pre-trained CNN model is fine-tuned to verify whether every frame is normal or abnormal in the spatial domain. If anomalous behaviors are observed, a motion-based individuals detection method based on the magnitudes and orientations of Horn-Schunck optical flow is used to locate and track individuals with abnormal behaviors. A Kalman filter is employed in large-scale crowd videos to predict and track the detected individuals in the subsequent frames. Then, means, variances, and standard deviations statistical features are computed and fed to the RF to classify individuals with abnormal behaviors in the temporal domain. In large-scale crowds, we fine-tune the ResNet-50 model using YOLOv2 object detection technique to detect individuals with abnormal behaviors in the spatial domain.
翻译:个人异常行为因人群大小、背景和场景而异。 诸如部分隔离、 模糊、 大量异常行为和相机观看等挑战在大型人群中发现、 跟踪和识别有异常行为的个人时会出现在大规模人群中。 在本文中,我们的贡献是双重的。 首先, 我们引入了附加说明和标签的大规模人群异常行为 朝圣数据集(HAJJv2)。 第二, 我们建议了两种混合革命神经网络(CNNs) 和随机森林(Rand Forests) 的方法, 以探测和识别在小型和大型空间视频中出现的斯帕蒂奥时态异常行为。 在小规模人群视频中, RENet- 50 预先培训的CNN 模型会进行精细调整, 以核实每个框架是否正常或不正常。 如果观察到异常行为, 我们使用基于“ 角- Schunclock 光学流动” 和 Rand Formats (RFs) 来定位和跟踪有异常行为的个人。 Kalman 过滤器在大型模型人群视频中用于预测和跟踪在空间域域域内检测个人, 和跟踪系统内部变变变变变变 。