Connected decision boundaries are used in different areas like image segmentation, clustering, alpha-shape or defining a region in nD-space. However, methods for generating such connected decision boundaries using neural networks are lacking in the machine learning literature. While exploring such methods, we found that such decision boundaries can be generated by thresholding a special kind of function called an invex function. We find a connection between invex functions and the connectedness of regions and manifolds, and we apply the connectedness and locality as a foundation for interpreting the nD-data-space. In this paper, we present two methods for constructing invex function using neural networks. The first one is based on intuitions developed visually and constraining the function using our method (Gradient Clipped-Gradient Penalty). The second one is based on later findings on the relationship of invex function to the composition of invertible and convex functions. Using connectedness as a basic interpretation method, we create connected region based classifiers. We show that multiple connected set based classifiers can approximate any classification function. In the experiments section, we first use the invex function for regression and classification tasks to visualize the global optimality and connected set in 2D toy datasets. Furthermore, we use our methods for classification tasks using an ensemble of models as well as using a single model on larger-scale datasets. The experiments show that connected set based classifiers do not have a significant disadvantage over ordinary neural network classifiers. We also evaluate various properties of invex function and connected sets. The overall exploration of this work suggests that invex function is fundamental to understanding and applying locality and connectedness of input space which is useful for multiple tasks.
翻译:在图像分割、 集群、 字母形状或定义 nD- 空间区域等不同区域使用连接的决定界限。 然而, 机器学习文献中缺少使用神经网络生成这种连接的决定界限的方法。 在探索这些方法时, 我们发现这种决定界限可以通过使用一种叫 Invex 函数的特殊功能来生成。 我们发现内维克斯函数与区域和元件的连接性之间的联系, 我们使用连接性和位置作为解释 nD- 数据- 空间的基础。 在本文件中, 我们用神经网络来构建内维克斯函数。 但是, 我们提出两种方法。 第一个方法以直觉为基础, 并且用我们的方法( 大Cliplecride- Gradition Gement) 来生成这样的决定界限。 第二个方法基于后来关于内维克斯函数与不可倒置和 convex 函数的构成的发现。 我们使用连接性能和地区分类法, 我们用多个连接的分类方法可以比较任何分类功能。 在实验部分中, 我们首先使用直观的直观和限制功能, 将总体的直观的直观值应用直径的直径计算函数 。 我们使用直径的直径的直径的直径的直径计算和直径函数 。