Visual perception is driven by the focus on relevant aspects in the surrounding world. To transfer this observation to the digital information processing of computers, attention mechanisms have been introduced to highlight salient image regions. Here, we introduce a parameter-free attention mechanism called PfAAM, that is a simple yet effective module. It can be plugged into various convolutional neural network architectures with a little computational overhead and without affecting model size. PfAAM was tested on multiple architectures for classification and segmentic segmentation leading to improved model performance for all tested cases. This demonstrates its wide applicability as a general easy-to-use module for computer vision tasks. The implementation of PfAAM can be found on https://github.com/nkoerb/pfaam.
翻译:视觉感知受周围世界相关方面关注的驱动。 为了将这一观察转移到计算机的数字信息处理中, 引入了关注机制以突出突出图像区域。 在这里, 我们引入了一个称为PfAAM的无参数关注机制, 称为PfAAM, 这是一个简单而有效的模块。 它可以插入各种连锁神经网络结构, 其计算间接费用略微, 且不影响模型大小。 PfAAM在分类和分解的多个结构上进行了测试, 从而改善了所有测试案例的模型性能。 这显示了它作为计算机视觉任务一般容易使用的模块的广泛适用性。 PfAAM的实施可以在 https://github.com/nkoerb/pfaam 上找到。