One approach for interpreting black-box machine learning models is to find a global approximation of the model using simple interpretable functions, which is called a metamodel (a model of the model). Approximating the black-box with a metamodel can be used to 1) estimate instance-wise feature importance; 2) understand the functional form of the model; 3) analyze feature interactions. In this work, we propose a new method for finding interpretable metamodels. Our approach utilizes Kolmogorov superposition theorem, which expresses multivariate functions as a composition of univariate functions (our primitive parameterized functions). This composition can be represented in the form of a tree. Inspired by symbolic regression, we use a modified form of genetic programming to search over different tree configurations. Gradient descent (GD) is used to optimize the parameters of a given configuration. Our method is a novel memetic algorithm that uses GD not only for training numerical constants but also for the training of building blocks. Using several experiments, we show that our method outperforms recent metamodeling approaches suggested for interpreting black-boxes.
翻译:解释黑盒机器学习模型的一种方法是使用简单解释函数(称为模型模型的模型)找到模型的全球近似值,该模型被称为一个元模型。将黑盒与一个元模型相配,可以用来(1) 估计实例特点的重要性;(2) 理解模型的功能形式;(3) 分析特征互动。在这项工作中,我们提出了寻找可解释的元模型的新方法。我们的方法使用科尔莫戈罗夫的叠加定位方格,该方格表示多种变量功能是单体函数的构成(我们原始参数化的函数)。这种构成可以以树的形式表示。受象征性回归的启发,我们使用一种经修改的基因编程形式来搜索不同的树形结构。渐降(GD)用于优化给定配置的参数。我们的方法是一种新型的计量算法,它不仅用于培训数字常数,而且用于培训建筑块。我们用几个实验,我们显示我们的方法优于最近建议的用于解释黑盒的元模型方法。