In this paper we introduce and analyze the learning scenario of \emph{coupled nonlinear dimensionality reduction}, which combines two major steps of machine learning pipeline: projection onto a manifold and subsequent supervised learning. First, we present new generalization bounds for this scenario and, second, we introduce an algorithm that follows from these bounds. The generalization error bound is based on a careful analysis of the empirical Rademacher complexity of the relevant hypothesis set. In particular, we show an upper bound on the Rademacher complexity that is in $\widetilde O(\sqrt{\Lambda_{(r)}/m})$, where $m$ is the sample size and $\Lambda_{(r)}$ the upper bound on the Ky-Fan $r$-norm of the associated kernel matrix. We give both upper and lower bound guarantees in terms of that Ky-Fan $r$-norm, which strongly justifies the definition of our hypothesis set. To the best of our knowledge, these are the first learning guarantees for the problem of coupled dimensionality reduction. Our analysis and learning guarantees further apply to several special cases, such as that of using a fixed kernel with supervised dimensionality reduction or that of unsupervised learning of a kernel for dimensionality reduction followed by a supervised learning algorithm. Based on theoretical analysis, we suggest a structural risk minimization algorithm consisting of the coupled fitting of a low dimensional manifold and a separation function on that manifold.


翻译:在本文中,我们介绍并分析 emph{ coupleed unlinesitual reduction} 的学习假想,这种假想结合了机器学习管道的两大步骤: 投射到一个多元的和随后监督的学习中。 首先, 我们为这个假想提供了新的概括性框架, 其次, 我们引入了一个由这些界限组成的算法。 概括性误差是基于对相关假设的复杂程度Rademacher经验的仔细分析。 特别是, 我们展示了Rademacher复杂程度的上限, 即$( sqrr) /m}, 机器学习管道的两大步骤是 $ (sqrqrrr) /m) : 投射到一个多倍的样本大小, 和 $\\\ lambda{ (r) } 。 我们的分析, 在 Ky- Fan $- $r-nornormum 上, 我们给出了上下限的保证, 这两层的保证, 这能有力地说明我们假设的定义。 最好的, 这些是第一个学习的学习基础上级的 的 降低 和 的精度分析, 。

0
下载
关闭预览

相关内容

降维是将数据从高维空间转换为低维空间,以便低维表示保留原始数据的某些有意义的属性,理想情况下接近其固有维。降维在处理大量观察和/或大量变量的领域很常见,例如信号处理,语音识别,神经信息学和生物信息学。
专知会员服务
159+阅读 · 2020年1月16日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
13+阅读 · 2019年1月26日
Arxiv
3+阅读 · 2018年8月17日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员