Visual servo techniques guide robotic motion using visual information to accomplish manipulation tasks, requiring high precision and robustness against noise. Traditional methods often require prior knowledge and are susceptible to external disturbances. Learning-driven alternatives, while promising, frequently struggle with the scarcity of training data and fall short in generalization. To address these challenges, we propose a novel visual servo framework Depth-PC that leverages simulation training and exploits semantic and geometric information of keypoints from images, enabling zero-shot transfer to real-world servo tasks. Our framework focuses on the servo controller which intertwines keypoint feature queries and relative depth information. Subsequently, the fused features from these two modalities are then processed by a Graph Neural Network to establish geometric and semantic correspondence between keypoints and update the robot state. Through simulation and real-world experiments, our approach demonstrates superior convergence basin and accuracy compared to state-of-the-art methods, fulfilling the requirements for robotic servo tasks while enabling zero-shot application to real-world scenarios. In addition to the enhancements achieved with our proposed framework, we have also substantiated the efficacy of cross-modality feature fusion within the realm of servo tasks.
翻译:暂无翻译