We study the interpolation, or memorization, power of deep ReLU neural networks. Specifically, we consider the question of how efficiently, in terms of the number of parameters, deep ReLU networks can interpolate values at $N$ datapoints in the unit ball which are separated by a distance $\delta$. We show that $\Omega(N)$ parameters are required in the regime where $\delta$ is exponentially small in $N$, which gives the sharp result in this regime since $O(N)$ parameters are always sufficient. This also shows that the bit-extraction technique used to prove lower bounds on the VC dimension cannot be applied to irregularly spaced datapoints.
翻译:我们研究深ReLU神经网络的内推或记忆化能力。 具体地说, 我们考虑深ReLU网络在参数数量方面能在多大程度上有效地在单位球中以美元数据点的内推值内推值( 单位球中由距离美元=delta美元分隔) 。 我们显示,在美元= delta美元指数小于美元= $( N) 的制度中需要美元= omega( N) $( 美元) 参数, 这使得这个制度产生显著的结果, 因为$( N) $( $) 参数总是足够。 这还表明,用于证明VC 维度下限的比特技术不能被不规则地应用到空格数据点上 。