In this tutorial paper, we first define mean squared error, variance, covariance, and bias of both random variables and classification/predictor models. Then, we formulate the true and generalization errors of the model for both training and validation/test instances where we make use of the Stein's Unbiased Risk Estimator (SURE). We define overfitting, underfitting, and generalization using the obtained true and generalization errors. We introduce cross validation and two well-known examples which are $K$-fold and leave-one-out cross validations. We briefly introduce generalized cross validation and then move on to regularization where we use the SURE again. We work on both $\ell_2$ and $\ell_1$ norm regularizations. Then, we show that bootstrap aggregating (bagging) reduces the variance of estimation. Boosting, specifically AdaBoost, is introduced and it is explained as both an additive model and a maximum margin model, i.e., Support Vector Machine (SVM). The upper bound on the generalization error of boosting is also provided to show why boosting prevents from overfitting. As examples of regularization, the theory of ridge and lasso regressions, weight decay, noise injection to input/weights, and early stopping are explained. Random forest, dropout, histogram of oriented gradients, and single shot multi-box detector are explained as examples of bagging in machine learning and computer vision. Finally, boosting tree and SVM models are mentioned as examples of boosting.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
10+阅读 · 2022年3月18日
Arxiv
10+阅读 · 2021年2月18日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关VIP内容
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
Arxiv
10+阅读 · 2022年3月18日
Arxiv
10+阅读 · 2021年2月18日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员