High quality AI solutions require joint optimization of AI algorithms, such as deep neural networks (DNNs), and their hardware accelerators. To improve the overall solution quality as well as to boost the design productivity, efficient algorithm and accelerator co-design methodologies are indispensable. In this paper, we first discuss the motivations and challenges for the Algorithm/Accelerator co-design problem and then provide several effective solutions. Especially, we highlight three leading works of effective co-design methodologies: 1) the first simultaneous DNN/FPGA co-design method; 2) a bi-directional lightweight DNN and accelerator co-design method; 3) a differentiable and efficient DNN and accelerator co-search method. We demonstrate the effectiveness of the proposed co-design approaches using extensive experiments on both FPGAs and GPUs, with comparisons to existing works. This paper emphasizes the importance and efficacy of algorithm-accelerator co-design and calls for more research breakthroughs in this interesting and demanding area.


翻译:高品质的AI解决方案需要联合优化AI算法,如深神经网络(DNN)及其硬件加速器。为了提高整体解决方案质量,提高设计生产率、高效算法和加速器共同设计方法必不可少。在本文件中,我们首先讨论Alogorithm/加速器共同设计问题的动机和挑战,然后提供若干有效的解决办法。特别是,我们强调有效共同设计方法的三项主要工作:1) 第一种同时使用的DNN/FPGA共同设计方法;2) 双向轻量的DNNN和加速器共同设计方法;3) 一种不同而高效的DNNNN和加速器共同设计方法。我们通过对FPGAs和GPUs进行广泛的实验,并对现有工作进行比较,展示了拟议的共同设计方法的有效性。本文强调了算法-加速器共同设计的重要性和效力,并呼吁在这一令人感兴趣和要求的领域实现更多的研究突破。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【边缘智能综述论文】A Survey on Edge Intelligence
专知会员服务
121+阅读 · 2020年3月30日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
TensorFlow Lite 2019 年发展蓝图
谷歌开发者
6+阅读 · 2019年3月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
Arxiv
6+阅读 · 2020年10月8日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
TensorFlow Lite 2019 年发展蓝图
谷歌开发者
6+阅读 · 2019年3月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
Top
微信扫码咨询专知VIP会员