Phabricator is a modern code collaboration tool used by popular projects like FreeBSD and Mozilla. However, unlike the other well-known code review environments, such as Gerrit or GitHub, there is no readily accessible public code review dataset for Phabricator. This paper describes our experience mining code reviews from five different projects that use Phabricator (Blender, FreeBSD, KDE, LLVM, and Mozilla). We discuss the challenges associated with the data retrieval process and our solutions, resulting in a dataset with details regarding 317,476 Phabricator code reviews. Our dataset is available in both JSON and MySQL database dump formats. The dataset enables analyses of the history of code reviews at a more granular level than other platforms. In addition, given that the projects we mined are publicly accessible via the Conduit API, our dataset can be used as a foundation to fetch additional details and insights.


翻译:编译者是FreeBSD和Mozilla等流行项目所使用的现代代码协作工具。 然而,与Gerrit 或 GitHub 等其他众所周知的代码审查环境不同,我们没有随时可访问的公共代码审查数据集。 本文描述了我们从五个不同项目(Blender、FreeBSD、 KDE、LVM 和 Mozilla)使用版本的采矿代码审查经验。 我们讨论了与数据检索过程和我们解决方案相关的挑战,从而产生了一个包含317,476个代码审查细节的数据集。 我们的数据集以JSON和 MySQL 数据库倾弃格式提供。 该数据集使得能够分析比其他平台更细的代码审查历史。 此外,鉴于我们所开采的项目可以通过Conduit API公开查阅, 我们的数据集可以用作获取更多细节和洞察力的基础。

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员