Exchangeability concerning a continuous exposure, X, implies no confounding bias when identifying average exposure effects of X, AEE(X). When X is measured with error (Xep), two challenges arise in identifying AEE(X). Firstly, exchangeability regarding Xep does not equal exchangeability regarding X. Secondly, the non-differential error assumption (NDEA) could be overly stringent in practice. To address them, this article proposes unifying exchangeability and exposure and confounder measurement errors with three novel concepts. The first, Probabilistic Exchangeability (PE), states that the outcomes of those with Xep=e are probabilistically exchangeable with the outcomes of those truly exposed to X=eT. The relationship between AEE(Xep) and AEE(X) in risk difference and ratio scales is mathematically expressed as a probabilistic certainty, termed exchangeability probability (Pe). Squared Pe (Pe2) quantifies the extent to which AEE(Xep) differs from AEE(X) due to exposure measurement error through mechanisms not akin to confounding mechanisms. The coefficient of determination (R2) in the regression of Xep against X may sometimes be sufficient to measure Pe2. The second concept, Emergent Pseudo Confounding (EPC), describes the bias introduced by exposure measurement error through mechanisms akin to confounding mechanisms. PE requires controlling for EPC, which is weaker than NDEA. The third, Emergent Confounding, describes when bias due to confounder measurement error arises. Adjustment for E(P)C can be performed like confounding adjustment. This paper provides maximum insight into when AEE(Xep) is an appropriate surrogate of AEE(X) and how to measure the difference between these two. Differential errors could be addressed and may not compromise causal inference.
翻译:暂无翻译