Black-box probing models can reliably extract linguistic features like tense, number, and syntactic role from pretrained word representations. However, the manner in which these features are encoded in representations remains poorly understood. We present a systematic study of the linear geometry of contextualized word representations in ELMO and BERT. We show that a variety of linguistic features (including structured dependency relationships) are encoded in low-dimensional subspaces. We then refine this geometric picture, showing that there are hierarchical relations between the subspaces encoding general linguistic categories and more specific ones, and that low-dimensional feature encodings are distributed rather than aligned to individual neurons. Finally, we demonstrate that these linear subspaces are causally related to model behavior, and can be used to perform fine-grained manipulation of BERT's output distribution.


翻译:黑盒检验模型可以可靠地从经过训练的字形演示中提取语言特征,如时态、数字和综合作用。 但是,这些特征的编码方式仍然不易理解。 我们对ELMO和BERT中背景化字形表达的线性几何学进行系统研究。 我们显示,在低维次空间中,有多种语言特征(包括结构上的依赖关系)编码。 然后,我们细化这一几何图画,显示子空间编码一般语言类别和更具体的类别之间有等级关系,低维特征编码是分布的,而不是与单个神经元一致的。 最后,我们证明这些线性子空间与模式行为有因果关系,可以用来对BERT的输出分布进行精细细的操纵。

0
下载
关闭预览

相关内容

必须收藏!MIT-Gilbert老爷子《矩阵图解》,一张图看透矩阵
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Visualizing and Measuring the Geometry of BERT
Arxiv
7+阅读 · 2019年10月28日
Arxiv
10+阅读 · 2018年3月22日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员