Money laundering is the crucial mechanism utilized by criminals to inject proceeds of crime to the financial system. The primary responsibility of the detection of suspicious activity related to money laundering is with the financial institutions. Most of the current systems in these institutions are rule-based and ineffective. The available data science-based anti-money laundering (AML) models in order to replace the existing rule-based systems work on customer relationship management (CRM) features and time characteristics of transaction behaviour. However, there is still a challenge on accuracy and problems around feature engineering due to thousands of possible features. Aiming to improve the detection performance of suspicious transaction monitoring systems for AML systems, in this article, we introduce a novel feature set based on time-frequency analysis, that makes use of 2-D representations of financial transactions. Random forest is utilized as a machine learning method, and simulated annealing is adopted for hyperparameter tuning. The designed algorithm is tested on real banking data, proving the efficacy of the results in practically relevant environments. It is shown that the time-frequency characteristics of suspicious and non-suspicious entities differentiate significantly, which would substantially improve the precision of data science-based transaction monitoring systems looking at only time-series transaction and CRM features.


翻译:洗钱是犯罪分子用来向金融系统注入犯罪所得的关键机制,侦查与洗钱有关的可疑活动的主要责任在于金融机构,这些机构目前大多数系统都是有章可循和无效的;现有的基于数据的科学反洗钱模式,以取代现有的基于规则的客户关系管理(CRM)特点和交易行为时间特征的系统工作;然而,由于可能具有数千种特征,在特征工程特征的准确性和问题方面仍然存在挑战;为了改进对反洗钱系统可疑交易监测系统的检测性能,在本篇文章中,我们采用了一套基于时间间隔分析的新特征,利用2D的金融交易说明;随机森林作为一种机器学习方法,并采用模拟肛交法进行超光谱调;对设计算法进行实际银行数据测试,以证明实际相关环境中的结果的有效性;表明可疑和非可疑实体的时间-频率特征有显著的区别,这将大大改进以科学为基础的交易监测系统的精确性,仅看时间序列的CRM和C。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
7+阅读 · 2019年3月28日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
Arxiv
4+阅读 · 2018年6月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
7+阅读 · 2019年3月28日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员