The popularity, cost-effectiveness and ease of information exchange that electronic mails offer to electronic device users has been plagued with the rising number of unsolicited or spam emails. Driven by the need to protect email users from this growing menace, research in spam email filtering/detection systems has being increasingly active in the last decade. However, the adaptive nature of spam emails has often rendered most of these systems ineffective. While several spam detection models have been reported in literature, the reported performance on an out of sample test data shows the room for more improvement. Presented in this research is an improved spam detection model based on Extreme Gradient Boosting (XGBoost) which to the best of our knowledge has received little attention spam email detection problems. Experimental results show that the proposed model outperforms earlier approaches across a wide range of evaluation metrics. A thorough analysis of the model results in comparison to the results of earlier works is also presented.


翻译:电子邮件为电子设备用户提供的信息交流的普及程度、成本效益和方便程度一直受到越来越多的未经索取或垃圾邮件的困扰。由于需要保护电子邮件用户免受这种日益增长的威胁,对垃圾邮件过滤/检测系统的研究在过去十年中越来越活跃。然而,垃圾邮件电子邮件的适应性往往使大多数这些系统无效。虽然文献中报告了几个垃圾邮件检测模型,但所报道的抽样测试数据外的性能表明有需要进一步改进的空间。本研究中展示的是一种基于极端快速启动(XGBoost)的改进的垃圾邮件检测模型,我们最了解的这种模型很少受到垃圾邮件检测问题的注意。实验结果显示,拟议的模型在广泛的评价指标方面优于早期的方法。还介绍了对模型结果的透彻分析,与早期工作的结果进行比较。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
xgboost特征选择
数据挖掘入门与实战
39+阅读 · 2017年10月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
3+阅读 · 2018年6月5日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
xgboost特征选择
数据挖掘入门与实战
39+阅读 · 2017年10月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员