In pliable index coding (PICOD), a number of clients are connected via a noise-free broadcast channel to a server which has a list of messages. Each client has a unique subset of messages at the server as side-information and requests for any one message not in the side-information. A PICOD scheme of length $\ell$ is a set of $\ell$ encoded transmissions broadcast from the server such that all clients are satisfied. Finding the optimal (minimum) length of PICOD and designing PICOD schemes that have small length are the fundamental questions in PICOD. In this paper, we use a hypergraph-based approach to derive new achievability and converse results for PICOD. We present an algorithm which gives an achievable scheme for PICOD with length at most $\Delta(\mathcal{H})$, where $\Delta(\mathcal{H})$ is the maximum degree of any vertex in a hypergraph that represents the PICOD problem. We also give a lower bound for the optimal PICOD length using a new structural parameter associated with the PICOD hypergraph called the nesting number. We extend some of our results to the PICOD problem where each client demands $t$ messages, rather than just one. Finally, we identify a class of problems for which our converse is tight, and also characterize the optimal PICOD lengths of problems with $\Delta(\mathcal{H})\in\{1,2,3\}$.


翻译:在可燃索引编码(PICOD)中,一些客户通过无噪音广播频道连接到一个服务器,该服务器有一份信息列表。每个客户在服务器上有一个独特的信息子集,作为侧信息,并请求提供非侧信息中的任何信息。一个长度为$\ell$(美元)的 PICOD 计划是一套由服务器广播的编码传输$ell(美元)的套件,使所有客户都满意。找到PICOD和设计长度小于(最低)的 PICOD 计划的最佳(最低)长度是 PICOD 的基本问题。在本文中,我们使用基于超高射线的方法为 PICOD 生成新的可接收性和反向结果。我们提出了一个算算法,其长度最多为$\Delta(macal{H}),其中$(美元)是代表 PICOD 问题的超音量顶点的最大(最小)长度。我们用新的结构参数将PICOD长度设定为某些最优的长度, $(美元) 与PICOD 高级要求相关的新的结构参数, 也就是我们每个客户要求的一个直达1 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月23日
Arxiv
0+阅读 · 2023年2月22日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员