Branching processes are a class of continuous-time Markov chains (CTMCs) prevalent for modeling stochastic population dynamics in ecology, biology, epidemiology, and many other fields. The transient or finite-time behavior of these systems is fully characterized by their transition probabilities. However, computing them requires marginalizing over all paths between endpoint-conditioned values, which often poses a computational bottleneck. Leveraging recent results that connect generating function methods to a compressed sensing framework, we recast this task from the lens of sparse optimization. We propose a new solution method using variable splitting; in particular, we derive closed form updates in a highly efficient ADMM algorithm. Notably, no matrix products -- let alone inversions -- are required at any step. This reduces computational cost by orders of magnitude over existing methods, and the resulting algorithm is easily parallelizable and fairly insensitive to tuning parameters. A comparison to prior work is carried out in two applications to models of blood cell production and transposon evolution, showing that the proposed method is orders of magnitudes more scalable than existing work.
翻译:在生态、生物学、流行病学和其他许多领域建立随机人口动态模型时,典型的连续时间Markov链(CTMCs)流程是一系列连续的Markov链(CTMCs),在生态、生物学、流行病学和许多其他领域都是如此。这些系统的短暂或有限时间行为完全以其过渡概率为特征。然而,计算这些流程需要在端点限定值之间的所有路径上处于边缘地位,这往往构成计算瓶颈。利用将生成功能方法与压缩感测框架联系起来的近期结果,我们从稀薄优化的角度重新审视这一任务。我们建议采用新的解决方案方法,使用可变分法;特别是,我们在高效的ADMM算法中获取封闭式形式更新。值得注意的是,在任何阶段都不需要任何矩阵产品,更不用说反向值。这样可以降低计算成本,因为比现有方法的量级要低,因此产生的算法很容易平行,而且对调调参数也相当不敏感。在血液细胞生产和转基因演进模型的两个应用中,对先前的工作进行了比较,显示拟议方法的尺寸顺序比现有工作要大得多。