All-or-nothing transforms (AONT) were proposed by Rivest as a message preprocessing technique for encrypting data to protect against brute-force attacks, and have numerous applications in cryptography and information security. Later the unconditionally secure AONT and their combinatorial characterization were introduced by Stinson. Informally, a combinatorial AONT is an array with the unbiased requirements and its security properties in general depend on the prior probability distribution on the inputs $s$-tuples. Recently, it was shown by Esfahani and Stinson that a combinatorial AONT has perfect security provided that all the inputs $s$-tuples are equiprobable, and has weak security provided that all the inputs $s$-tuples are with non-zero probability. This paper aims to explore on the gap between perfect security and weak security for combinatorial $(t,s,v)$-AONTs. Concretely, we consider the typical scenario that all the $s$ inputs take values independently (but not necessarily identically) and quantify the amount of information $H(\mathcal{X}|\mathcal{Y})$ about any $t$ inputs $\mathcal{X}$ that is not revealed by any $s-t$ outputs $\mathcal{Y}$. In particular, we establish the general lower and upper bounds on $H(\mathcal{X}|\mathcal{Y})$ for combinatorial AONTs using information-theoretic techniques, and also show that the derived bounds can be attained in certain cases. Furthermore, the discussions are extended for the security properties of combinatorial asymmetric AONTs.
翻译:Rivest 提议将所有或无的变换( AONT) 由 Rivest 提出, 作为一种信息预处理技术, 用于加密数据, 以防范野蛮攻击, 并在加密和信息安全方面有许多应用。 后来, Stinson 引入了无条件安全的 AONT 及其组合式定性。 非正式地, 组合式变换( AONT) 是一组无偏向要求, 其安全属性一般取决于投入的先前概率分布 $- 美元 。 最近, Esfahani 和 Stinson 显示, 组合式的AONT 具有完美的安全性, 条件是所有输入的美元是可配置的, 并且安全性要求所有输入的 $- 美元是非零概率的。 本文旨在探索组合 $( t, s,v) $- 美元 安全性, 具体地说, 我们认为所有输入的美元值都是独立的( 但不一定是相同的), 并且将信息的数量由 $- x 以一般的 美元 表示。