Iris segmentation is the initial step to identify biometric of animals to establish a traceability system of livestock. In this study, we propose a novel deep learning framework for pixel-wise segmentation with minimum use of annotation labels using BovineAAEyes80 public dataset. In the experiment, U-Net with VGG16 backbone was selected as the best combination of encoder and decoder model, demonstrating a 99.50% accuracy and a 98.35% Dice coefficient score. Remarkably, the selected model accurately segmented corrupted images even without proper annotation data. This study contributes to the advancement of the iris segmentation and the development of a reliable DNNs training framework.
翻译:在这项研究中,我们提出了一个新的深层次学习框架,以利用BovineAAEyes80公共数据集进行像素分解,并尽可能少地使用注解标签。在实验中,VGG16主干网被选为编码器和解码器模型的最佳组合,显示了99.50%的精确度和98.35%的狄氏系数。值得注意的是,所选模型精确地分解了损坏的图像,即使没有适当的注解数据。这一研究有助于推进离子分化和开发可靠的DNNS培训框架。