Segmentation is an essential operation of image processing. The convolution operation suffers from a limited receptive field, while global modelling is fundamental to segmentation tasks. In this paper, we apply graph convolution into the segmentation task and propose an improved \textit{Laplacian}. Different from existing methods, our \textit{Laplacian} is data-dependent, and we introduce two attention diagonal matrices to learn a better vertex relationship. In addition, it takes advantage of both region and boundary information when performing graph-based information propagation. Specifically, we model and reason about the boundary-aware region-wise correlations of different classes through learning graph representations, which is capable of manipulating long range semantic reasoning across various regions with the spatial enhancement along the object's boundary. Our model is well-suited to obtain global semantic region information while also accommodates local spatial boundary characteristics simultaneously. Experiments on two types of challenging datasets demonstrate that our method outperforms the state-of-the-art approaches on the segmentation of polyps in colonoscopy images and of the optic disc and optic cup in colour fundus images.
翻译:图像处理的一个基本操作。 卷轴操作存在一个有限的可接收字段, 而全球建模是分解任务的基础。 在本文中, 我们将图形演化应用到分解任务中, 并提议改进的 \ textit{ Laplacian} 。 不同于现有的方法, 我们的 \ textit{ Laplacian} 是依赖于数据, 我们引入两个注意的对角矩阵以学习更好的顶点关系。 此外, 在进行基于图形的信息传播时, 它利用区域和边界信息。 具体地说, 我们通过学习图形显示来模拟不同班级的边界- 觉区域相关性, 以及原因和原因, 从而能够操纵不同区域的远程语义推理, 并沿天体边界进行空间增强 。 我们的模型非常适合获取全球语区信息, 同时适应本地空间边界特性 。 对两种具有挑战性的数据集的实验表明, 我们的方法超过了对结肠镜镜图像和光碟和彩色杯中图像的分块的状态- 。