Markov random fields (MRFs) appear in many problems in machine learning and statistics. From a computational learning theory point of view, a natural problem of learning MRFs arises: given samples from an MRF from a restricted class, learn the structure of the MRF, that is the neighbors of each node of the underlying graph. In this work, we start at a known near-optimal classical algorithm for this learning problem and develop a modified classical algorithm. This classical algorithm retains the run time and guarantee of the previous algorithm and enables the use of quantum subroutines. Adapting a previous quantum algorithm, the Quantum Sparsitron, we provide a polynomial quantum speedup in terms of the number of variables for learning the structure of an MRF, if the MRF has bounded degree.


翻译:Markov随机字段(MRFs)出现在机器学习和统计的许多问题中。从计算学习理论的角度来看,学习MRF的自然问题产生:从一个受限制的等级的MRF样本中,学习MRF的结构,即基图的每个节点的周边。在这项工作中,我们从一个已知的接近最佳的经典算法开始,以研究这个学习问题,并开发一个经修改的古典算法。这一古典算法保留了前算法的运行时间和保证,并允许使用量子路程。调整了以前的量子算法,即Quantum Sparsitron,我们提供了多数值加速,以变量的数量来学习MRF的结构,如果MRF具有约束度的话。

0
下载
关闭预览

相关内容

马尔可夫随机场(Markov Random Field),也有人翻译为马尔科夫随机场,马尔可夫随机场是建立在马尔可夫模型和贝叶斯理论基础之上的,它包含两层意思:一是什么是马尔可夫,二是什么是随机场。
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
47+阅读 · 2020年1月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Neural Trees for Learning on Graphs
Arxiv
0+阅读 · 2021年10月28日
Arxiv
1+阅读 · 2021年10月25日
Arxiv
7+阅读 · 2021年10月19日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Top
微信扫码咨询专知VIP会员