Given a permutation $\pi:[k] \to [k]$, a function $f:[n] \to \mathbb{R}$ contains a $\pi$-appearance if there exists $1 \leq i_1 < i_2 < \dots < i_k \leq n$ such that for all $s,t \in [k]$, it holds that $f(i_s) < f(i_t)$ if and only if $\pi(s) < \pi(t)$. The function is $\pi$-free if it has no $\pi$-appearances. In this paper, we investigate the problem of testing whether an input function $f$ is $\pi$-free or whether at least $\varepsilon n$ values in $f$ need to be changed in order to make it $\pi$-free. This problem is a generalization of the well-studied monotonicity testing and was first studied by Newman, Rabinovich, Rajendraprasad and Sohler (Random Structures and Algorithms 2019). We show that for all constants $k \in \mathbb{N}$, $\varepsilon \in (0,1)$, and permutation $\pi:[k] \to [k]$, there is a one-sided error $\varepsilon$-testing algorithm for $\pi$-freeness of functions $f:[n] \to \mathbb{R}$ that makes $\tilde{O}(n^{o(1)})$ queries. We improve significantly upon the previous best upper bound $O(n^{1 - 1/(k-1)})$ by Ben-Eliezer and Canonne (SODA 2018). Our algorithm is adaptive, while the earlier best upper bound is known to be tight for nonadaptive algorithms.
翻译:根据 $\ pi: [k]\ t [k] 美元, 函数 $f: [n]\ t\ t\ t\ mathb{R} 美元, 如果存在 1\ leq i_ 1 < i_ 2 < dots < i_ k\ leq n$ < i_ k\ t\ k] 美元, 那么对于所有 $, (k) 美元, 美元 < f( i_ s) < f( i_ t) 美元, 只有当 $\ pi} 美元 (t) 时, 函数是 美元=pi- fl) 美元。 如果它没有 $\ piqb_ i> i_ i_ 1 i_ i_ 2 < i> 美元, 美元, 则函数是 美元= pi- 美元 美元 美元 。 在本文件中, 测试一个输入 $ 美元是否美元, 美元 或 美元 美元 美元 。